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Low-temperature thermodynamics of the classical frustrated ferromagnetic spin chain near the ferromagnet-
helimagnet transition point is studied by means of mapping to the continuum limit. The calculation of the
partition function and spin-correlation function is reduced to quantum problem of a particle in potential well.
It is shown that exactly at the transition point the correlation length behaves as T−1/3 and the magnetic
susceptibility diverges as T−4/3 in the low-temperature limit. Corresponding numerical factors for the correla-
tion length and the susceptibility is calculated. It is shown that the low-temperature susceptibility in the helical
phase near the transition point has a maximum at some temperature. Such behavior as well as the location and
the magnitude of the maximum as a function of deviation from the transition point are in agreement with that
observed in several materials described by the quantum s=1 /2 version of this model.
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I. INTRODUCTION

Lately, there has been considerable interest in low-
dimensional spin models that exhibit frustration.1 A very in-
teresting class of such systems with unique physical proper-
ties is chain compounds consisting of edge-sharing CuO4
units.2–7 The frustration in these compounds arises from the
competition of the ferromagnetic �F� interaction J1 of
nearest-neighbor �NN� spins and the antiferromagnetic �AF�
next-nearest-neighbor �NNN� interaction J2. An appropriate
model describing the magnetic properties of such copper ox-
ides is so-called F-AF spin chain model, the Hamiltonian of
which has a form

H = J1 � Sn · Sn+1 + J2 � Sn · Sn+2, �1�

where J1�0 and J2�0.
This model is characterized by the frustration parameter

�=J2 / �J1�. The ground-state properties of the quantum
s=1 /2 F-AF chain have been intensively studied last
years.8–16 It is known that the ground state of model �1� is
ferromagnetic for ��1 /4. At �=1 /4 the quantum phase
transition to the incommensurate singlet phase with helical
spin correlations takes place. Remarkably, this transition
point does not depend on a spin value, including the classical
limit s→�.

However, the influence of the frustration on low-
temperature thermodynamics is less studied, especially in the
vicinity of the ferromagnet-helimagnet transition point. It is
of a particular importance to study this problem because
edge-sharing cuprates with ��1 /4 �for example, Li2CuZrO4
and Rb2Cu2Mo3O12� are of special interest.17 Unfortunately,
at present the low-temperature thermodynamics of quantum
s=1 /2 model �1� at ��0 can be studied only either by using
of numerical calculations of finite chains or by approximate
methods. On the other hand, the classical version of model
�1� can be studied by analytical methods giving exact results
at T→0. Of course, the question arises about the relation of
these results �in particular, for the susceptibility� to those of
the quantum model. It is known18–20 that quantum and clas-
sical ferromagnetic chains ��=0� have universal low-

temperature behavior. As was noted in Ref. 19 the physical
reason of this universality is the consequence of the fact that
the correlation length at T→0 is larger than de Broglie
wavelength of the spin waves. This property is inherent in
the frustrated ferromagnet too. Though such universality for
the frustrated ferromagnetic chains is not strictly checked at
present, one can expect that the universality holds on for the
F-AF chain as well. Therefore, the study of classical model
�1� can be useful for the understanding of the low-
temperature properties of the quantum F-AF chains.

At zero-temperature classical model �1� has long-range
order �LRO� for all values of �: the ferromagnetic LRO at
��1 /4 and the helical one at ��1 /4. At finite temperature
the LRO is destroyed by thermal fluctuations and thermody-
namic quantities have singular behavior at T→0. In particu-
lar, the zero-field magnetic susceptibility � diverges. For
the one-dimensional Heisenberg ferromagnet �HF� �
=2�J1� /3T2.21 At 0���1 /4 the susceptibility is
�=2�1–4���J1� /3T2. This behavior of � is similar to that for
the quantum s=1 /2 F-AF model.22 The value �T2 vanishes
at the transition point. As it was noted in Ref. 22 this fact
indicates the change in the critical exponent.

In this paper we focus on the low-temperature behavior of
the classical F-AF chain near the ferromagnet-helimagnet
transition point. At first we consider the case �=1 /4, i.e., the
F-AF model exactly at the transition point. This problem is
interesting on its own account because the spectrum of low-
energy excitations is proportional to k4 rather than k2 as for
the HF model. It means that the critical exponents character-
izing the low-temperature behavior of thermodynamic quan-
tities at �=1 /4 can be different from those for the HF chain.
Besides, the method developed for the study of the transition
point can be generalized to investigate the vicinity of the
transition point.

At the ferromagnet-helimagnet transition point �=1 /4 it
is convenient to rewrite Hamiltonian �1� in the form23

H =
1

8 � �Sn+1 − 2Sn + Sn−1�2. �2�
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In Eq. �2� we put �J1�=1 and omit unessential constant.
In the classical approximation the spin operators Sn are

replaced by the classical vectors S�n of the unit length. In
what follows we use the continuum approach replacing S�n by
the classical vector field s��x� with slowly varying orienta-
tions so that

S�n+1 − 2S�n + S�n−1 �
�2s��xn�

�x2 , �3�

where the lattice constant is chosen as unit length.
In the low-temperature limit the thermal fluctuations are

weak so that neighbor spins are directed almost parallel and
continuum approach �Eq. �3�� is justified. Using the con-
tinuum approximation, Hamiltonian �2� goes over into the
energy functional of the vector field s��x�,

E =
1

8
	 dx
 �2s�

�x2�2

. �4�

This energy functional is a starting point of the investiga-
tions of model �1� at �=1 /4. The partition function is a
functional integral over all configurations of the vector field
on a ring of length L,

Z =	 Ds��x�exp�−
1

8T
	

0

L

dx
 d2s�

dx2�2 . �5�

It is useful to scale the spatial variable as

� = 2T1/3x . �6�

Then, the partition function takes the dimensionless form

Z =	 Ds����exp�− 	
0

�

d�
 d2s�

d�2�2 , �7�

where the rescaled system length is �=2T1/3L. The partition
function �Eq. �7�� and the correlation function �s��l� ·s��0�� are
the objects of the current study.

The paper is organized as follows. In Sec. II we consider
the planar version of spin model �4� at �=1 /4. For this more
simple model we demonstrate the technique of the calcula-
tion of the correlation function. We show that the thermody-
namics of this classical one-dimensional model reduces to
the zero-dimensional quantum problem of a particle in a po-
tential well. In Sec. III the classical continuum F-AF model
at the transition point is studied. In this case the partition
function describes a quantum particle in an axially symmetri-
cal potential well. We obtain the exact expressions for the
susceptibility and the structure factor. In Sec. IV the behavior
of the uniform susceptibility in the helical phase at �	1 /4
is studied and compared with the experimental data for the
edge-shared compounds and with the results for the quantum
s=1 /2 model. The conclusions are summarized in Sec. V.
and the Appendix contains some technical aspects of the cal-
culation of the correlation function.

II. PLANAR SPIN CASE AT �=1 Õ4

A. Partition function

We begin our investigation of the thermodynamics in the
transition point with a more simple planar spin version of
model �4�, when all spin vectors lie in one plane and have
only two components,

s���� = �sin 
���,cos 
���� . �8�

Such order of study is methodically justified because the
technique of the correlation function calculation is similar
for both planar and original three-component spin models
but it is easier to demonstrate on the simple planar model.

In terms of 
��� the Hamiltonian transforms to


 d2s�

d�2�2

= 
d2


d�2�2

+ 
d


d�
�4

�9�

and the partition function becomes

Z =	 D
���exp�− 	
0

�

d��
�2 + 
�4� , �10�

where the prime denotes the space derivatives d /d�.
In general, when one deals with the field theory contain-

ing the second or higher order derivatives one has to follow
the Ostrogradski prescription.24 However, as will be demon-
strated below, in our case we can avoid such complications
and calculate the partition function and correlation functions
in a more simple way.

Since the Hamiltonian contains only derivatives of the
field 
���, the partition function can be rewritten in terms of
a new field

Z =	 Dq���exp�− 	
0

�

d��q�2 + q4� , �11�

where

q��� =
d
���

d�
. �12�

To calculate the partition function we utilize well-known
equivalence of the n-dimensional statistical field theory with
the �n−1�-dimensional quantum field theory. It is obvious in
advance that partition function �Eq. �11�� describes a quan-
tum particle in a potential well U�q�=q4 at “temperature”
1 /�. However, we will follow all intermediate steps because
we will need them in the subsequent calculations of the cor-
relation function.

The transition amplitude �or propagator� of a particle lo-
cated initially at q�0�=qi and finally at q�t�=qf takes the
form of a path integral

�qf�e−itĤ�qi� � 	
qi

qf

Dq�t�exp�i	
0

t

dtL�q̇,q� . �13�

Then, imposing the periodic boundary conditions
qf =qi=q and integrating over q, we obtain the partition func-
tion in a form

Z �	 dq�q�e−itĤ�q� . �14�
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In our case we replace � by an imaginary time �→ it and
partition function �Eq. �11�� takes the form of a path integral
of a quantum particle in a potential well,

Z =	 Dq�t�exp�i	
0

−i�

dtL0�q̇,q� , �15�

where the Lagrangian is

L0 = q̇2 − q4. �16�

The momentum p is p=2q̇ and the Hamiltonian is

H0 =
1

4
p2 + q4. �17�

The corresponding Schrödinger equation describes a
quantum anharmonic oscillator,

−
1

4

d2�

dq2 + q4� = � . �18�

The spectrum of Eq. �18� is calculated numerically

� = 0.4208;1.508;2.96. . . �19�

and the wave function �0�q� for the lowest level
0=0.4208 is shown in Fig. 1.

Now the exponent of Ĥ0 can be represented as follows:

e−�Ĥ0 = �
�

����e−������ �20�

and the partition function becomes

Z �	 dq�q�e−�Ĥ�q� = �
�

e−��. �21�

As expected, we obtain the partition function of a quan-
tum anharmonic oscillator at temperature 1 /�. In the thermo-
dynamic limit �= �2T1/3L�→� only the lowest eigenvalue
0=0.4208 gives contribution to the partition function,

Z → e−�0. �22�

B. Correlation function

The scalar product of vector fields located on distance l
can be written as

s��l� · s��0� = cos�
�l� − 
�0�� = cos�	
0

l


��x�dx�
= R�exp
i	

0

�

q���d��� , �23�

where �=2T1/3l.
Then, the correlation function can be represented as a

ratio of two functional integrals,

�s��l� · s��0�� =
1

Z
R�Zc� , �24�

where denominator Z is already calculated �see Eq. �21�� and

Zc =	 Dq exp�− 	
0

�

d��q�2 + q4� + i	
0

�

qd� . �25�

The latter path integral is clearly divided on two parts
�0,�� and �� ,�� and Zc can be represented as

Zc =	 dq0dq�Z1�q0,q��Z2�q�,q0� , �26�

where the propagators Z1 and Z2 are

Z1�q0,q�� = 	
q0

q�

Dq exp�− 	
0

−i�

dtL1�q̇,q�� , �27�

Z2�q�,q�� = 	
q�

q�

Dq exp�− 	
−i�

−i�

dtL0�q̇,q�� �28�

and periodic boundary condition q�=q0 is applied.
The Lagrangian L0 is given by Eq. �16� and

L1 = q̇2 − q4 + iq . �29�

The propagator Z2 is calculated straightforward using Eqs.
�13� and �20�,

Z2 = �
�

e−��−����q���������q0� . �30�

But the propagator Z1 requires special treatment because
L1 and the corresponding quantum Hamiltonian H1 are non-
Hermitian,

Ĥ1 = −
1

4

d2

dq2 + q4 − iq . �31�

Non-Hermitian operator Ĥ1 can be represented as

Ĥ1 = �
�

���u���v�� , �32�

where �u�� and �v�� are eigenfunctions of direct and conju-
gate eigenvalue equations,

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

q

ψ

FIG. 1. Wave function �0�q� for the lowest level 0=0.4208 of
planar spin model.
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Ĥ1�u�� = ���u�� ,

Ĥ1
†�v�� = ��

� �v�� . �33�

The normalization conditions for �u�� and �v�� are

�v��u�� = �u��v�� = ��,�. �34�

Equation �33� for Hamiltonian �31� transform to each
other by complex conjugation operation. This implies that
eigenfunctions in Eq. �33� satisfy the relation �v��= �u�

��.
Thus, we need to solve only one of the differential equations
�Eq. �33��. The numerical calculations show that all eigen-
values of Eq. �33� are real and positive. A few lowest eigen-
values are presented in Eq. �35�,

�� = 0.6472;1.517;2.99. . . �35�

Real and imaginary parts of u0�q� for the lowest level
�0=0.6472 are shown in Fig. 2.

Now, the propagator Z1 can be expressed through the so-
lutions of Eq. �33�,

Z1 = �q0�e−�Ĥ1�q�� = �
�

e−����q0�u���v��q�� , �36�

where we used the identity

e−�Ĥ1 = �
�

�u��e−����v�� . �37�

Then, substituting Eqs. �30� and �36� into Eq. �26� and inte-
grating over q0 and q� we obtain

Zc = �
�,�

e−����−��e−������u��2. �38�

The main contribution in the thermodynamic limit �→� is
given by the lowest value 0 and Zc reduces to

Zc → e−�0�
�

e−����−0���0�u��2. �39�

Substituting �=2T1/3l into Eq. �39�, we find from Eq. �24�
the correlation function

�s��l� · s��0�� = R�
�

��0�u��2e−2T1/3���−0�l. �40�

The correlation length is governed by the lowest eigenvalue
�0 and equals to

lc =
1

2T1/3��0 − 0�
= 2.2T−1/3. �41�

So, the low-temperature behavior of the correlation length is
different from the HF model, where lc�T−1.

Now, the structure factor can be also calculated

S�k� = 2R	
0

�

dleikl�s��l� · s��0��

= 2�
�

��0�u��2 2T1/3��� − 0�
4T2/3��� − 0�2 + k2 . �42�

In the low-temperature limit, the expansion of the structure
factor for any k�T1/3 has the form

S�k� =
4T1/3

k2 �
�

��� − 0���0�u��2

−
16T

k4 �
�

��0�u��2��� − 0�3 + ¯ . �43�

The first term in Eq. �43� is zero because

�
�

��� − 0���0�u��2 = ��0�Ĥ1 − Ĥ0��0� = − i��0�q��0� = 0

�44�

and ��0� is even function of q.
Therefore, the structure factor is given by the second term

in Eq. �43�, which can be calculated exactly

�
�

��� − 0�3��0�u��2 = ��0��Ĥ1 − Ĥ0�3 +
1

2
��Ĥ0,Ĥ1�,Ĥ1���0�

= −
1

4
. �45�

Therefore, the low-temperature asymptotic of the structure
factor is

S�k� =
4T

k4 . �46�

Hence, the susceptibility ��k� for k�T1/3 remains finite in
the low-temperature limit,

��k� =
S�k�
2T

=
2

k4 . �47�

The fact that ��k��k−4 �instead of k−2 for HF chain� is a
consequence of the fact that the excitation spectrum becomes
�k4 at the transition point.

For k=0 the structure factor �Eq. �42�� diverges at T→0
as

S�0� = T−1/3�
�

��0�u��2

�� − 0
. �48�

-1.5
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-0.5
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0.5

1
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Re(u)
Im(u)

FIG. 2. Real and imaginary parts of the wave function u0�q� for
the lowest level �0=0.6472 of planar spin model.
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The sum in Eq. �48� is calculated numerically and gives
the factor �5.36. Therefore, the magnetic susceptibility be-
haves as T−4/3,

��0� =
S�0�
2T

=
2.68

T4/3 . �49�

In conclusion of this section we emphasize that the exact
calculation of the correlation function for the planar spin
model demonstrates that the critical exponents at the transi-
tion point of the F-AF chain can differ from that for the HF
chain.

III. CLASSICAL SPIN MODEL AT THE TRANSITION
POINT

A. Partition function

The calculation of the correlation functions for the classi-
cal three-component spin model �2� is to a large extent simi-
lar to the planar spin case and to avoid duplications we will
often refer to the previous section. So, in this section we
consider the continuous model described by energy func-
tional �Eq. �4�� where three-component vector field s���� has
the constraint s�2���=1.

Since in the partition function the integration occurs over
all possible spin configurations, we are free to choose any
local coordinate system. It is convenient to choose it so that
the Z axis at the point � is directed along the spin vector s����
so that the spin vector s����= �0,0 ,1�.

Let us introduce a new vector field

q���� =
ds�

d�
= �qx,qy,qz� . �50�

The constraint s�2���=1 converts to the relations for q����,

qz = 0,

qz� = − qx
2 − qy

2, �51�

where the prime denotes the space derivatives d /d�.
Then, the Hamilton function in Eq. �7� transforms to


 d2s�

d�2�2

= 
dq�

d�
�2

= qx�
2 + qy�

2 + �qx
2 + qy

2�2. �52�

Here we see that the constraint s�2=1 effectively elimi-
nates the Z component of q� from the Hamilton function.
Therefore, henceforth we deal with the qx and qy components
of the vector field q� only, and we denote a two-component
vector field by q���= �qx ,qy�.

The partition function in terms of q��� takes the form

Z =	 Dq exp�− 	
0

�

d��q�2 + q4� . �53�

Similar to the planar spin case, we treat the partition func-
tion as path integral �Eq. �15�� for the quantum mechanics of
a single particle with the Hamiltonian

Ĥ0 = −
1

4
� + q4, �54�

where �=�x
2+�y

2 is two-dimensional �2D� Laplace operator.
Hamiltonian �54� commutes with the z component of the

angular momentum l̂z and eigenstates ��q� of the corre-
sponding Schrodinger equation

Ĥ0� = � �55�

are divided to subspaces of azimuthal quantum numbers
lz=0, �1, �2, . . ..

Thus, the wave function �lz
�q� describes a particle with

the azimuthal quantum number lz in 2D axially symmetrical
potential well U�q�=q4. Numerical solution of Eq. �55� gives
the lowest levels for lz=0, �1, �2,

��lz = 0� = 0.9305;3.78;7.44. . .

��lz = � 1� = 2.14;5.48;9.44. . .

��lz = � 2� = 3.54;7.27;11.5. . . �56�

The wave function �0�q� for the lowest eigenvalue
0=0.9305 is shown in Fig. 3.

Now, by the analogy with the planar spin case, Eqs. �20�
and �21�, we obtain the partition function as a sum of expo-
nents over all quantum numbers � and lz,

Z = �
�,lz

e−��,lz. �57�

In the thermodynamic limit �→� only the lowest level
0=0.9305 survives and the partition function is

Z = e−�0. �58�

B. Correlation function

Since we work with the local coordinate system directed
so that the spin vector is directed along the Z axis, in order to
find the scalar product of spin vectors s��l� ·s��0� we need to
express the vector s��0� in the local coordinate system located

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

q

FIG. 3. Wave functions ��q� �solid line� for the lowest level
0=0.9305 and u3�q� �dashed line� for the level �0=1.4113.
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at the point x= l. This can be represented as a chain of suc-
cessive rotations describing the trajectory s��x� �see the Ap-
pendix�,

s�x=l�0� = exp
i	
0

l

�dx�s�x=0�0� , �59�

where �= ��� ·�� �x�� can be expressed through the vector q��x�
as

� =
��� · �q� � q���

q�2 = �yqx − �xqy + �z

qxqy� − qyqx�

qx
2 + qy

2 . �60�

In this equation we used relations �51� for the Z compo-
nent of q� and q��.

Then, taking into account that the spin vectors are
directed along the Z axis of local coordinate system
s�x=0�0�=s�x=l�l�= �0,0 ,1�, the scalar product of spin vectors
s��l� ·s��0� becomes

s��l� · s��0� = �0 0 1 �exp�i	
0

l

��q,q��dx��0

0

1
� . �61�

Similar to the planar case, the correlation function can be
written as a ratio of two path integrals �Eq. �24��, where the
denominator Z is given by Eq. �58� and the numerator rep-
resents the following path integral:

	 Dq exp�− 	
0

�

d��q�2 + q4� + i	
0

�

��q,q��d� .

�62�

Then, repeating the arguments presented in Eqs.
�25�–�30�, we arrive at the problem of the calculation of the
propagator,

	
q0

q�

Dq exp�i	
0

−i�

dtL1�q̇,q� = �q0�e−�Ĥ1�q�� , �63�

where the Lagrangian and the corresponding quantum
Hamiltonian are

L1 = q̇2 − q4 − i�yqx + i�xqy − �z
qxq̇y − qyq̇x

qx
2 + qy

2 , �64�

Ĥ1 = −
1

4
� + q4 +

�z
2 − 2�zl̂z

4q2 + i�yqx − i�xqy . �65�

Substituting �� from Eq. �A5�, the Hamiltonian takes the
matrix form

Ĥ1 =�Ĥ0 +
1

4q2

1

2q2 il̂z qx

−
1

2q2 il̂z Ĥ0 +
1

4q2 qy

− qx − qy Ĥ0

� , �66�

where Ĥ0 is defined by Eq. �54�.

Operator Ĥ1 is non-Hermitian and the exponent of Ĥ1 can
be represented as

e−�Ĥ1 = �
�

�u���e−����v��� , �67�

where three-component eigenvectors u��qx ,qy�= �u1 ,u2 ,u3�
and v��qx ,qy�= �v1 ,v2 ,v3� satisfy the corresponding eigen-
value equations

Ĥ1u� = �u� ,

Ĥ1
†v� = ��v� . �68�

The normalization conditions are

�v���u��� = �u���v��� = ��,�. �69�

Making the same procedure for non-Hermitian operators
as for the planar spin case we obtain the correlation function
in a form

�s��l� · s��0�� = R�
�

��0�u3,���v3,���0�e−����−0�. �70�

Only the eigenfunctions �u3,�� and �v3,�� are present in the
above equation, because according to Eq. �61� we need only
the element �3,3� of the resultant matrix.

Since the wave function �0 has zero angular momentum,
then only the sector lz=0 of Eq. �68� gives the contribution to
the correlation function. In this sector the wave functions
depend only on q= �q�, the Hamiltonian is simplified so that
we have to solve a pair �instead of three� differential equa-
tions for u3�q� and ��q�= �qxu1+qyu2� /q,

−
1

4

d2�

dq2 −
1

4q

d�

dq
+

1

4q2� + q4� + qu3 = �� ,

−
1

4

d2u3

dq2 −
1

4q

du3

dq
+ q4u3 − q� = �u3. �71�

The conjugate eigenvalue problem for v� in Eq. �68� trans-
forms to exactly the same differential equations �Eq. �71��
for the functions v3

��q� and ���q�=−�qxv1
�+qyv2

�� /q. There-
fore, the function v3�q� is found from the solution of Eq. �71�
by the relation v3�q�=u3

��q� and the normalization conditions
�Eq. �69�� transform to

�u3,�
� �u3,�� − ���

� ���� = ��,�. �72�

One can see that Eq. �71� describes a two-level system in
an axially symmetric potential well U�q�=q4, where two lev-
els with angular momenta lz=0 and lz=1 are coupled by
non-Hermitian transition operator. The spectrum of this sys-
tem of equations turns out to be real and positive as for the
planar case and a few lowest levels are

�� = 1.4113;1.83;3.98. . . �73�

The reality of the spectrum �� has an important conse-
quence: the correlation function �Eq. �70�� decays on large
distances without oscillations.

The wave function u3�q� for the lowest level �0=1.4113
is shown in Fig. 3. As follows from Fig. 3 the behavior of the
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functions �0�q� and u3�q� are similar. Therefore, the main
contribution to the correlation function, the structure factor,
and the susceptibility is given by the level �0.

The correlation function and the structure factor are given
by Eqs. �40� and �42� with the substitution u3,� for u� and
eigenvalues presented in Eqs. �56� and �73�. Therefore, the
correlation length defined by the lowest eigenvalue �0 be-
haves similar to the planar spin case �T−1/3 but the numeri-
cal factor is different,

lc = 1.04T−1/3. �74�

The low-temperature asymptotic of static structure factor
S�k� and the susceptibility ��k� for k�T1/3 is calculated in a
similar way as for the planar spin case �see Eq. �43�� result-
ing in

S�k� =
8T

k4 ,

��k� =
8

3k4 . �75�

For k=0 the structure factor S�0� is defined by Eq. �48�
with the corresponding eigenfunctions and eigenvalues. The
numerical calculation of the sum gives

S�0� = T−1/3�
�

��0�u3,��2

�� − 0
=

3.21

T1/3 . �76�

Thus, we have arrived at the final result for the magnetic
susceptibility of the classical spin model at the transition
point,

��0� =
S�0�
3T

=
1.07

T4/3 . �77�

We see that the planar spin model gives correct critical
exponent for the magnetic susceptibility.

IV. LOW-TEMPERATURE SUSCEPTIBILITY IN THE
HELICAL PHASE

In the preceding sections we have considered the low-
temperature thermodynamics at the transition point �=1 /4.
Likewise it is possible to extend the developed method for
the study of the vicinity of the transition point. In this case an
additional term 2��−1 /4�s��2 appears in energy functional
�Eq. �4��, which after rescaling of spatial variable �Eq. �6��
forms the scaling variable

� =
� − 1/4

T2/3 . �78�

Especially interesting is to study the vicinity of the tran-
sition point when values ��−1 /4� and T are small but the
parameter � is fixed. All the steps in derivation of the expres-
sions for the correlation function are exactly the same as was
done for the transition point and only the form of the poten-
tial well in the corresponding differential equations �Eq.
�71�� is modified: U�q�=q4−4�q2. Numerical solution of the

corresponding differential equations allows to find the corre-
lation function, the static structure factor S�k�, and the sus-
ceptibility as a function of �. As follows from Eqs. �76� and
�77� the susceptibility can be rewritten as

� =
f���
T4/3 =

�2f���
�� − 1/4�2 . �79�

Thus, the normalized susceptibility �̃=���−1 /4�2 is a
universal function of �.

On the ferromagnetic side of the transition point
���1 /4� the susceptibility diverges at T→0, but the expo-
nent changes from 4/3 to 2, so that the susceptibility be-
comes ���1 /4−�� /T2.

The behavior of the susceptibility in the helical phase
is more interesting. The dependence of the uniform
susceptibility �̃ on the normalized temperature x=�−3/2

=T / ��−1 /4�3/2 in the helical phase is shown in Fig. 4. The
characteristic features of this dependence are the maximum
of �̃ at x=xm and the finite value of �̃ at T→0. The latter fact
is a classical effect and can be destroyed by quantum fluc-
tuations. In the quantum s=1 /2 F-AF model the ground state
is believed to be gapped �though the gap can be extremely
small9� and so �→0 at T→0. In real materials interchain
interactions cause the three-dimensional spiral LRO and the
susceptibility can remain finite at T=0.

The obtained dependence ��T� is in a qualitative agree-
ment with those observed in the edge-shared compounds
with � close to 1/4 �Li2CuO2,2 Rb2Cu2Mo3O12,

4 and
Li2CuZrO4 �Ref. 17��. As follows from Eq. �79� the
location of maximum of ��T� is at Tm���−1 /4�3/2 and
�m���−1 /4�−2, i.e., with the increase in � the maximum of
� shifts to higher temperatures and the magnitude of the
maximum �m decreases. These dependencies of Tm and �m
on the frustration parameter � are also in accord with the
experimental observations.17

The dependence �̃�x� agrees also with the numerical re-
sults for the uniform susceptibility obtained by transfer ma-
trix renormalization group �TMRG� and exact diagonaliza-
tion methods for the quantum F-AF chain with s=1 /2.12,17

The dependence Tm��� is similar to that obtained by the
TMRG calculations in Ref. 12. Thus, the classical model

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12 14

T/(α-1/4)3/2

χ.
( α

-1
/4

)2

FIG. 4. Normalized susceptibility ���−1 /4�2 as a function of
normalized temperature T / ��−1 /4�3/2.
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catches the physics of quantum spin systems in the helical
phase and, therefore, the developed method for the classical
spin model represents a useful tool for the investigation of
the low-temperature behavior of the quantum systems.

V. SUMMARY

We have obtained the exact results for the low-
temperature thermodynamics of the classical F-AF model at
the frustration parameter �=1 /4, where the ground-state
phase transition from the ferromagnetic to the helical phase
occurs. The main result relates to the behavior of the zero-
field susceptibility � and the correlation length lc. It is shown
that the critical exponents of � and lc are changed from 2 to
4/3 and from 1 to 1/3 correspondingly, when �→1 /4 from
the ferromagnetic side. We note that the critical exponents
are the same both for the classical spin model and for the
planar model. In the present paper we have considered a
continuum version of model �2�. However, the low-
temperature asymptotes of � and lc of the continuum and
lattice models coincide. In fact, lattice model �2� can be stud-
ied on a base of the transfer-matrix method adapted in Ref.
25 to include the NNN interaction. We have shown �Ref. 26�
that the corresponding transfer-integral equations are reduced
at T→0 to the differential equations �Eqs. �55� and �71��
with the same eigenfunctions and eigenvalues so that the
exact low-temperature asymptotic of the susceptibility coin-
cides with Eq. �77�. Besides, the structure factor S�k� for the
lattice model is given by Eq. �42� under substitution of
2�1−cos k� for k2 in the dominator of Eq. �42�. At the same
time, calculations in a frame of path-integral method are es-
sentially simpler and clear in comparison with those in the
transfer-integral approach.

It is interesting to compare the exact expression for the
susceptibility at the transition point with the results found by
approximate methods. One of this methods is the modified
spin-wave theory �MSWT� proposed by Takahashi27 to ex-
tend the spin-wave theory to the low-dimensional spin sys-
tems without LRO. Another approximate approach is the ex-
pansion of the thermodynamics of the n-vector classical
model in powers in 1 /n �Refs. 28 and 29� �usually, up to the
first order�. Remarkably, both methods give the true critical
exponent 4/3 for the susceptibility �=cT−4/3. However, the
numerical coefficient c differs from the exact one. For ex-
ample, the MSWT result is c=1.19. The 1 /n expansion for
the classical spin model �2� gives c=0.560 in the zeroth or-
der and c=0.897 in the first order in 1 /n. The comparison of
these values of c with the exact one shows that these ap-
proximate methods give a satisfactory agreement �within
10–20 %� with the exact coefficient. It is worth to note that
the MSWT gives the exact low-temperature asymptotic of
�=2 /3T2 for the classical ferromagnetic chain ��=0�.21

Moreover, the MSWT gives the exact result for � at T→0
for the quantum ferromagnetic chain with s=1 /2 as well. As
was noted in Sec. I, the quantum and the classical ferromag-
netic chains have universal low-temperature properties. The
low-temperature susceptibility of the ferromagnetic chain is
described by the scaling function universal for any value of
spin s. For the F-AF model at �=1 /4 there is no rigorous

proof of such universality, though MSWT confirms this hy-
pothesis. If this universality holds in the case �=1 /4 then we
expect that the quantum F-AF chain has the same critical
exponent of � as in the classical model.

We have also considered the low-temperature thermody-
namics in the vicinity of the transition point. In this case the
properties of the system are governed by the scaling param-
eter �= ��−1 /4� /T2/3. On the ferromagnetic side of the tran-
sition point ���1 /4� the susceptibility transforms smoothly
to ���1 /4−�� /T2 at �→−�, which describes the change in
the exponent at T→0. The susceptibility in the helical phase
for a fixed value of �	1 /4 behaves as ����−1 /4�−2 at
�→�, which means that the uniform susceptibility remains
finite at T→0. Besides, we found that the susceptibility in
the helical phase has a maximum at some temperature
Tm���−1 /4�−3/2. The presence of maximum of the depen-
dence ��T� as well as the location and the magnitude of this
maximum as a function of the deviation from the transition
point ��−1 /4� are in agreement with that observed in several
materials described by the quantum s=1 /2 version of this
model and with the numerical results for the s=1 /2 model.
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APPENDIX

Let us consider a particle moving along a trajectory r��t�.
At any moment the particle motion can be represented as an
instant rotation around some instantaneous axis of rotation
with definite angular velocity. The radius of the instant rota-
tion � is expressed through the centripetal part r�̈c of the ac-
celeration vector r�̈,

� =
r�̇2

�r�̈c�
. �A1�

The angular velocity is

� =
�r�̇�
�

=
��r�̇ � r�̈��

r�̇2
, �A2�

where we took into account that �r�̈c ·r�̇�=0.
Since the rotation takes place in the �r�̇ ,r�̈� plane, the in-

stantaneous axis of rotation is directed along �r�̇�r�̈�. There-
fore, if we define the “local” coordinate system associated
with the moving particle so that the instant coordinate axes
are directed along the vectors r�̇, r�̈c, and �r�̇�r�̈�, then the
instant change in the local coordinate system is expressed by
the rotation matrix

R = exp�i��� · �� �� , �A3�

�� =
�r�̇ � r�̈�

r�̇2
, �A4�

where
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�x = �0 0 0

0 0 i

0 − i 0
�, �y = �0 0 − i

0 0 0

i 0 0
�, �z = � 0 i 0

− i 0 0

0 0 0
� .

�A5�

This implies that if a given fixed vector s� has components
s�t0 in the local coordinates corresponding to time t0, then the
components of this vector in the local coordinates corre-

sponding to time t1 can be represented as a chain of succes-
sive rotations,

s�t1
= exp�i	

t0

t1

��� · �� �t��dts�t0
. �A6�
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